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I. INTRODUCTION

The present paper is concerned with the theoretical description of steady-
state deflagration of uncatalyzed, homogeneous solid propellants. OQur principal
aim is to seek a minimum level description of the burning process which can
elucidate the relationship between the fundamental chemical and physical pro-
perties of a propellant and such combustion characteristics as the pressure
and temperature sensitivities. It is our feeling that such a description must
involve processes occuring in both the condensed and gaseous phases and account
for their mutual interplay at the phase boundary. Accordingly, the basic
idealization of the burning process to be considered in this paper is that of
a single gas-phase chemical reaction and a single condensed-phase process
responsible for surface gasification. Both sublimation (or evaporation from a
melt layer) and pyrolysis into gaseous products are considered as candidate
possibilities for this gasification process.

The chosen idealization is by no means novel; however, the considerable
literature on the subject is marked by diversity in notation, approach, and
intent. Comparison of burning rate predictions is hampered by these
characteristics and, more importantly, by the fact that many theories are not
strictly expressible in closed form. In this paper we derive approximate
closed form expressions for the burning rate pressure and temperature
dependences based on what we perceive to be the salient assumptions of a
number of these theories. Within the mathematical framework adopted for this
study most theories fall into one of three broad categories of heat feedback
approximation. Naturally, some theories fit into our scheme better than
others, hence no judgement is implied regarding those theories lightly
touched on or not mentioned at all.

Progress toward the understanding of complex phenomena has often been
made through the use of idealizations. It is unfortunate that the subject
idealization, primitive as it may seem, appears not to be amenable to exact
solution. Expressing the gas-phase reaction rate in an Arrhenius form (as
is usual) introduces extreme non-linearities into the conservation equationms,
making even numerical solutions far from trivial. Notwithstanding this
fact and the enormous potential detail which might be required to
characterize the gas-phase processes for each propellant, the observed
burning rate as a function of both pressure and initial temperature displays
a remarkably simple and universal behavior. This suggests that insight
might be gained regarding at least the broad features of the combustion
phenomenology through development of an appropriate idealization. The
present study represents an attempt to determine the adequacy of existing
notions for this purpose.

I1. FORMULATION OF THE 1-DIMENSIONAL STEADY-STATE PROBLEM

A. General Approach

At our chosen level of idealization, the solid propellant burning process
consists of one mole of unburnt propellant molecules A in the solid undergoing
a physical or chemical transformation into N; moles of gaseous B molecules.
Each mole of B molecules then reacts chemically in the gas phase to produce N2
moles of product molecules C. The gas-phase reactant B may be either the same
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chemical species as A (differing only by a phase change) or a different chemical
species than A. Figure 1 represents these processes schematically. In principle,
the problem can be approached by solving the steady-state conservation equations
in the solid and gas phases separately and then matching the solutions at the
gas-solid interface in a manner consistent with the assumed solid-to-gas decom-
position mechanism.

B. Gas Phase Description

The gas-phase problem consists of only two different chemical species,
denoted by B and C. It is supposed that B undergoes reactive conversion to C
with the consequent release of heat. Our problem is to compute the conductive
heat feedback to the surface of the solid under constant pressure conditions.
The radiative component of the heat feedback is assumed to be negligible. As
mentioned, if one expresses the reaction rate in an Arrhenius form, the con-
servation equations take on a highly non-linear character, placing an exact
solution beyond reach. For this reason some investigators have obtained
approximate solutions in an attempt to gain an appreciation for the inter-
relation of physical and chemical processes. However, even these approximate
solutions are sometimes so mathematically involved as to endanger their purpose.
Such analytic intricacy inhibits comparison of the salient features of these
theories as well. It is our intent to re-examine this approach by expressing
the essential elements of a number of these past approximations in a single
framework which hopefully clarifies their physical implications.

The conservation equations for the steady-sta&e include those for mass,
chemical species, and energy given respectively as

(pu) = 0 Mass Conservation

O-lO-
~

%;-(meVB) + Rx) =0 Chemical Species Conservation

d

il (A%%- - %;-(mehBVB + mcphCVC) =0 Energy Conservation

where p is the local mass density of the gas mixture, u is the local velocity
of mass motion, mg and m; are the local mass fractions of species B and C, VB
and V¢ are the local species velocities (combined mass motion and diffusional
components), R(x) is the mass of B undergoing reaction per unit volume per unit
time at x, A is the local thermal conductivity of the mixture, T is the local
temperature, and hg ¢ is the local enthalpy per unit mass for species B or C.
A chemical species equation can be written analogously for mc. The mass con-

JR.D. Geckler, "The Mechanism of Combustion of Solid Propellants,' Selected

Combustion Problems, AGARD, Butterworths (London), 1954. p. 289.
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Figure 1. Schematic representation of processes considered in burning of
idealized solid propellant.



servation equation can be integrated to obtain

pu = constant = M (1)

where M is sometimes called the mass regression rate and is related to the
linear regression rate r through the solid density P by the equation

M= PTs (la)

If we assume negligible particle diffusion by thermal gradient (Soret
effect), the species mass fluxes can be written

de

meVB = mpou - Dp T (2)

and analogously for mg, where D is the diffusion coefficient (DB = D¢ = D)2.

The species conservation equation can then be written

dm dm
d B B _
dx (Dp dx ) - M dx - R(X) 20 (3)

and the energy conservation equation becomes

dm
d dT dT _ B
A MC — + (hB-hC) R = pD I

C
el U p dx d

B
e - &5

215

where the specific heat of the mixture, C,, is related to the component specific

heats CB and Cg by Cp = chg + mCCp° We now make the first substantive assump-
tions, .

CB = CC = {_ = constant '

P P P

A = constant

With the first of these assumptions, the energy equation becomes

d dT dT _
a;-(kg;ﬂ - MCp P qx) =0 4)
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where

]

a(x) = (hy - h)) Rx) = QR(x) (5)

] ]
the symbol Qg = hg - hg being used to represent the heat of reaction per unit
reactant mass in the gas phase at the reference thermodynamic state (denoted
by the zero superscripts). Making use of the A = constant assumption and
imposing the boundary condition

Eqn. (4) may be integrated by the integrating factor method to give the con-
ductive heat feedback flux ¢G

- MC
by = A f exp(- —L2 x) q(x)dx. 6)

d
XIx=0 ©

As it stands Eqn. (6) is purely a formal result since q(x) is only known
after the problem has been solved; however, it is a particularly meaningful
equation from a physical standpoint. The exponential factor

MC
exp(- 5E x)

is a measure of the relative effectiveness with which heat released at some dis-
tance x from the surface contributes to the overall heat feedback. As might be

expected, the larger A is, the more effective is the heat conduction back to the
surface. The larger C, is, the more heat is retained at x and the less heat is

returned to the surface. The larger M is, the more difficult it is for heat to

return to the surface against the convective counter-flow.

The gas-phase heat release function q(x) can be related to the physical
and kinetic parameters of the gas phase as follows:

a(x) = QgR(x) = Q; (mgp)” Kk (7)

where vy is the reaction order and kg is the reaction rate constant assumed to
have the form (R being the universal gas constant)

ko SV e R

¢ = Ag (8)
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Expressing p in terms of the ideal gas law,

_ WP
p = RT (9)

where W is the mean molecular weight of the gas mixture. As previously noted,
N2 moles of C appear for every mole of B that reacts so that the molecular
weight of C, Wg, is related to the molecular weight of B, Wg, by W¢ = WB/N2.
The number of moles of B and C at any x, ng and ng, is given by

_mpp mee  (L-mgloN,
BT W, " TW. T W ’
B c B

The average molecular weight at this point in the gas can therefore be shown
to be

we____ B __, (10)
Nz—mB(Nz—l)

Combining Eqns. (7), (8), (9), and (10),

Qg my Wy PVAg /T
q(x) = (11)

Vv Vv Vv
R T [Ny-my(Ny-1)]

where it is understood that mB and T are functions of x.

A number of other useful relationships can be obtained by making the
further assumption that the Lewis number is unity, in which case

A
Dp = i (12)

Physically, this assumption links the heat transfer by conduction to that
transported by diffusion. Mathematically, Eqns. (3) and (4) are no longer
independent, i.e., the solution of one can be related to the solution of the
other. Using Eqn. (12) one can show? that the enthalpy is uniform throughout
the gas phase, i.e., if we follow a unit mass sample from the surface at
temperature Tg to the final flame temperature Tf, the enthalpy of the sample

2D.B. Spalding, "The Theory of Burning of Solid and Liquid Propellants,"
Combustion & Flame, Vol. 4, p. 69 (1960).
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at any point is given by
My (T) hy(T) + m.(T) he(T) = h.(T,) (13)

where hp is the enthalgy of B per unit mass of B, etc. By our previous

assumption that CB = Cp C, = constant, we can write, for example,

P

o

hB = hB + Cp (T-T ), (14)

Substituting Eqn. (14) and the analogous expression for hc into Eqn. (13) and

making use of the constraint mp + M. = 1, one can show that
C_(T.-T)
my (T) = p £ - (15)
le

which relates the solution of Eqn. (3) to that of Eqn. (4) at all x in the gas
phase.

C. Solid Phase Description

In this section the external energy flux required by the solid in order
to maintain a given steady-state M and Tg will be determined. We shall neglect
any radiative energy loss from the solid. (See Section IVC for futher comment
on this assumption). It is envisioned that the solid-to-gas decomposition
comprises the following sequence of steps. At x=-o the solid is entirely A
so that my=1. In the case of a pyrolysis reaction it is assumed that a unit
mass of A will be converted into mp™© unit mass of B and (1-mg~©) unit mass of
C. Thus at x=-o, i.e., at the condensed-phase side of the interface, mp=0, mp=
mg~9, and m.=(1-mg~®). At this stage B and C are considered to be adsorbed
onto the surface. Since the symbols hpg and hg refer to the gaseous phase of B
and C, we shall denote the enthalpy of B and C in the absorbed state by hp g
and hg g. Taking mp~© # 1 in general allows us to consider the case where
both reactive as well as non-reactive products are formed in the condensed-
phase pyrolysis reaction. For simplicity we have assumed that these non-reactive
products have the same properties as C. B is assumed to react only in the gas
phase.

The steady-state energy conservation equation in the condensed phase,
neglecting particle diffusion, may be written

d dT dT . |
H(xs a;) - MC, G+ a (x) = 0 (16)

where X is the thermal conductivity of the solid, Cq its specific heat, and
qg (x) the heat absorbed by the solid per unit volume per unit time from
reactions in the solid. Cg is assumed to be constant. Integrating Eqn. (16)
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from x = -» to x=-0 with the boundary condition %%l =0, we obtain

X=-00

= dT -0 -0
Ul —_— = | _l - or _ > = - 2%
¢S = AS | I _ MCS( s ) M [h! mB hB,S (l mB )hc,s]‘ (17)

The last term in Eqn. (17) may be obtained by constructing q_(x) by analogy to
Eqn. (5) and integrating the species conservation equation of mp (similar to
Eqn. (3) but with zero diffusion) from x=-= to x=-0.

As noted by Buckmaster, et al.,3 there is an additonal energy flux require-
ment arising from the desorption of B and C at the interface. In our notation
it is given by

op = Mng™® [hg(T)-hy (TO] + M (L-my™) [he(T)-he (T)].

Since hg ¢(T) = hﬁ,s + Cg(T-T°) and hg(T) = hg + Cp(T-T°), etc., the total
energy flux requirement can be shown to be

- T - S
¢S = ¢S + ¢I = MCp(TS- qTo = q) (18)

where Qg = h} - mB-ohﬁ = (1-mB'°)hE + (Cs-Cp)T°. ¢g in Eqn. (18) simply repre-
sents the heat flux required from Sources eXternal to the solid to maintain a
surface temperature Tg when the mass regression rate is M and the initial
temperature is To. ¢g, on the other hand, is the heat flux which the gas-
phase processes are capable of providing at a given pressure when the mass

flux is M and the surface temperature is Tg.

We shall also wish to examine a simple phase change process as the
mechanism for surface gasification. In this case mg™® = 1 and Eqn. (18) is
changed only by the substitution Qs=-Qv, where QV is the latent heat of trans-
formation.

D. Surface Decomposition Mechanism

In addition to having to solve the conservation equations for the gas and
solid phases separately, one must also have a quantitative description of the
mechanism by which the solid decomposes into a gas at the interface. The de-
tails of this process are poorly understood despite its central importance to
propellant combustion. There are, however, two schools of thought which have
found recurring application. One is that the mechanism consists of pyrolytic
conversion of solid reactant to gas-phase products. The other is that the

3J.D. Buckmaster, A.K. Kapila and G.S.S. Ludford, "Linear Condensate

Deflagration for Large Activation Energy," Acta Astronautica, Vol. 3,
p. 593 (1976).
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conversion is a phase change between condensed and gaseous states, i.e., either
sublimation or evaporation from a melt layer,

The pyrolysis hypothesis is usually expressed by the relation

M= M e—Es/RTs. (19)

There have been few attempts to estimate My and Eg in an a priond sense.4’5

The calculation of Wilfong, Penner and Daniels4 was based on the energy needed
to break the 0-NO2 bond in nitrocellulose (NC), the surface density of those
bonds, and application of transition state theory to obtain a frequency factor.
The value of this frequency factor, although typical for gas-phase unimolecular
reactions, is five or more orders of magnitude lower than that derived from NC
thermal decomposition experiments.1’6s7 In most cases, however, Mg and Eg are
simply used as fitting parameters to calibrate a given burning rate model to
experimental data.

Evaporative mechanisms usually take the integrated Clausius-Clapyron form
for the propellant vapor pressure (PB) immediately adjacent to the surface,
i.e.,

_ -E_/RT
PB = Po e Vv s (20)

where E, is the heat of vaporization and P, is a constant. Use of this equili-
brium-based expression may have validity as an idealization in spite of the
inherently non-equilibrium phenomenon of burning. One can expect that equili-
brium would be established at a rate which depends on the molecular velocity

(of molecules escaping the surface). The vapors outside the surface are removed
at a rate depending on the transport velocity (VB in Eqn. (2)). The molecular

4R.E. Wilfong, S.S. Pernmer and F. Daniels, "An Hypothesis for Propellant

Burning," J. Phys. & Colloid Chem., Vol. 54, p. 863 (1950).

°R.D. Sehultz and A.0. Dekker, "The Absolute Thermal Decomposition Rates of

Solids," Fifth Symposium (Intermational) on Combustion, The Combustion
Institute (1960), p. 260.

6R.D. Smith, "Pyrolysis of Dissolved Nitrocellulose," Nature, Vol. 170,

p. 844 (1952).

7R.W. Phillips, C.A. Orlick and R. Steinberger, "The Kinetics of the Thermal

Decomposition of Nitrocellulose," J. Phys. Chem., Vol. 59, p. 1034 (1959).

15



velocity, however, should be fast relative to the transport velocity or the
notion of local temperature would break down. It is reasonable, therefore, to
assume that at least a condition of 'near" equilibrium vapor pressure might
well prevail very close to the surface.

E. Solution Matching at the Interface

The conservation laws which are applied in obtaining ¢g and ¢g, viz.,
conservation of mass, energy and species, must also be applied to the solid-
gas interface. In addition, the solid decomposition mechanism must be taken
into account. The mass conservation principle is satisfied simply by requiring
that M have the same value in both the solid and gas phases. Energy conser-
vation is achieved by equating the energy fluxes across the interface, i.e.,

¢S('TS,M) = ¢G(TS’M)' (21)

In physical terms, this means that the energy flux required by the solid to
maintain a steady-state mass regression rate M at a surface temperature Tg
must be supplied by the heat flux which the gas-phase processes are capable
of providing for the same values of M and Tg.

Species conservation across the interface is assured by the formulation
of an appropriate boundary condition. Since we are assuming that no diffusion
occurs in the condensed phase, the flux of B at the left of the boundary is
Mmg=©. This value is reduced on the gas side of the boundary by diffusion.
The continuity condition is then

-0 _ Mo *° - p ETE (22)
B ° Ix | :

B B
X=+0

Since m, is decreasing in the gas phase, the derivative on the right side of
Eqn. (29) will be negative, so that mg=© > mp*0 as expected. Normally, Eqn.
(22) would be used as a boundary condition in solving Eqn. (3) in order to
obtain ¢ . (T_,M). This is done in Section IIIA where by assuming a constant
temperature reaction rate an analytic solution can be found. It would also be
done in a numerical solution to Eqns. (3) and (4). In one of the approximations
to be discussed (Section IIIC) we shall find it convenient to view Eqn. (22)
simply as a constraint to be observed in matching the heat fluxes (Eqn. (21)).
In this connection it is useful to place Eqn. (22) in a slightly different form.
Using Eqn. (15) to relate the derivatives of m, and T, and substituting for

Dp from Eqn. (12), we find B
¢
-0 +0 G
= - SRR 2
my my oG (23)

In addition to these continuity requirements an additional constraint is
imposed by the surface decomposition mechanism. For pyrolysis M(Tg) is given
by Eqn. (19). The phase change mechanism quantified by Eqn. (20) does not

16



explicitly relate the unknowns Ts,M, and m +o, so that the nature of the con-
straint is not clear. Starting from the relation P = Pg + P, where Pc is the
partial pressure of C, and using Eqn. (10), one can arrive at the expression

(T )| £ 2%y B (24)
P+ (N,-1JP,(T)

Eqn. (24), where Pg(Tg) is given by Eqn. (20), is then the most convenient
operational constraint corresponding to the phase change mechanism.

In summary, one can view the problem of finding the steady-state solution
as one in which the three unknowns, Tg, M, mg*© are to be found from Eqns. (21),
(23), and either Egqn. (19) or Eqn. (24). The way in which this is done will
depend in detail on the approximation method used, a matter which will be dis-
cussed in Section III.

F. Simplifications

For purposes of making first order comparisons of different theories for
¢G, much of the detail of previous sections is not needed. In particular, we
wish to simplify the problem by holding constant those variables whose
expected degree of change would be unlikely to seriously influence results.
The following items are so identified and appropriately approximated as

W = constant

C =C_=C_. (25)

It is assumed that in applying these approximations one has sufficient infor-
mation on a propellant to make reasonable estimates for these constants.

A further simplification we shall wish to make is to assume negligible
species transport by diffusion. The quality of this approximation is by no
means self-evident, and can best be assessed by comparison to a calculation
which does not neglect diffusion. Rice and Ginell® have done this and found
that the character of the burning rate behavior is not seriously altered by
this assumption. It is important to note that in the zero diffusion limit
we can no longer assume that the Lewis number is unity as this would force
a neglect of thermal conduction (by Eqn. (12)) as well. With no diffusion
the species transport equation (Eqn. (3)) can then be written

de
M T R(x) (26)

80.K. Rice and R. Ginell, "The Theory of the Burning of Double-Base Rocket

Powders," J. Phys. & Colloid Chem., Vol. 54, p. 885 (1950).
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and the boundary condition of Eqn. (22) becomes
(27)

For both pyrolysis and evaporation mechanisms this assumption has the effect
of reducing the unknowns to only Ts and M, eliminating Eqn. (23).

For convenience we label the approximations expressed in Eqns. (25)-(27)
as Level II. A Level I calculation is taken to imply all of the assumptions
stated in the development prior to Eqn. (25). Thus a Level I calculation is
our most general formulation of the basic idealization. A Level II calculation
is an approximate formulation from which general trends are still expected to
emerge. In this paper we shall devote the bulk of our attention to the Level
IT approximation since here our primary interest is in qualitative trends
implied by the chosen idealization. The problem of applying these concepts
to actual propellant formulations in a Level I calculation requires the dif-
ficult choice of kinetic constants and will be addressed in a future article.

II1. GAS-PHASE APPROXIMATIONS
In this section we shall consider a number of different approaches to
estimating the gas-phase heat feedback capability ¢g. The utility of the
form of Eq. (6) will become clear since all of the approximations discussed

can be reduced to assumptions as to the behavior of q(x).

A. Constant Temperature Reaction Rate (CTRR)

It is clear from Eqn. (6) that if an adequate approximation for the heat
release function q(x) can be found, ¢, can be calculated for a given value of
M. Eqn. (11) shows that in order to compute q(x), both T(x) and mg(x) must be
known. These two quantities are interrelated by the energy conservation
equation (Eqn. (4)) and the species continuity equation (Eqn. (3)). If we
assume that the reaction proceeds as though it were at some constant temperature
T1 (historically taken as the flame temperature, Tf) and with constant W, i.e.,

_ v
R(x) = Ro mg (28)
where
wWpYA, e-EG/RTl
Ro gfv (29)
R T1

then Eqn. (3) can be solved exactly for v=1 (using Eqn. (22) as interface

18



boundary condition)}. The solution is

(for v=1) (30)

where

Using Eqns. (28) and (30) we may then arrive at an expression for the gas-
phase heat feedback ¢g by integrating Eqn. (6).

-0
XQGRomB
b, = . (for v=1) (31)
G MC_ (1+ Dpa)(1+ AQ
P M MCp

It is of interest to compare this solution which includes the effects of
species diffusion to one in which such effects are neglected. This can be
accomplished by solving Eqn. (3) without the second derivative term (or taking
the limit of Egqn. (30) as Dp - 0)}. Again for v=1, the results are

R
o
o ~ M X
m, =my e (v=1, no diffusion) (32)
and
XQGRomB-O
¢G = R (v=1, no diffusion), (33)
MC_(1+ 5 )
M~C
P

The functional forms of Eqns. (31} and (33) bear some resemblance, and in the
limit of small RO/M2 the forms become identical. Physically, this limit corre-
sponds to the heat feedback ¢ being small compared to the maximum possible
heat feedback QgMmpg~©. (See Section IVAl).

For the case of a second order reaction, i.e., v=2, Eqn. (3) appears not
to have a closed form solution, However, it can be solved analytically in the
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limit of zero diffusion, in which case

m, = (v=2, no diffusion), (34)
B

M°Cp
-0 ARomﬁo M2Cp
0c © QGMmB e EZ(Xﬁgﬁg:tﬂ (v=2, no diffusion) (35)

where E2 (z) is the standard exponential integral.

Equation (35) can be related to two of the early attempts to model homo-
geneous solid propellant combustion. Both Parr and Crawford® and Rice and
Ginell18 assumed a second order reaction in the "fizz zone" or gaseous region
immediately adjacent to the surface of a burning double-base propellant. Parr
and Crawford® assumed zero diffusion and arrived at a first approximation
(Eqn. (42) of Ref. 9) which is essentiallg the same expression as a mixture of
our Eqns. (18) and (35). Rice and Ginell® at first treated the zero diffusion
case and also arrived at an equivalent of our Eqns. (18) and (35) (Cf. Eqns.
(9), (10) and (11a) of Ref. 8). These latter authors then introduced a
diffusion correction for the second order reaction case and found, as have we
for v=1 above, that the functional forms of the solution with and without
diffusion are similar. Rice and Ginell® justified the use of a constant
temperature reaction rate as a limiting case of zero activation energy (Eg)
and simply used kg as an adjustable constant in fitting their theory to burning
rate data. Parr and Crawford,® while conceding that zero activation energy is
the proper limiting case corresponding to use of Eqn. (29), chose to retain
explicitly both the activation energy (Eg) and frequency factor (Ag) as adjust-
able parameters in fitting their theory to burning rate data. Their rationale
was to consider the constant temperature reaction rate as an approximate for-
mulation. In both treatments8,9 the temperature T; was taken to be that at
the end of the fizz zone, i.e., Tf in our notation.

B. Delta Function Heat Release (DFHR)

Another approach to evaluating ¢g is to assume that the heat release
function q(x) can be approximated by a Dirac delta function, i.e.,

q(x) = q  8(x-x*) (36)

%8.G. Parr and B.L. Crawford, Jr., "A Physical Theory of Burming of Double-
Base Rocket Rocket Propellants,” J. Phys. & Colloid Chem., Vol. 64, p. 929,
1950.
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where x* is the so called flame-standoff distance and q, can be evaluated by
the requirement

fo Q(x)dx = QMm, ™" (37)

which is simply the flux corresponding to the total gas-phase heat release.

Eqn. (37) can be obtained by integrating Eqn. (3) over (+o,») subject to the
boundary condition Eqn. (22). It follows that the constant in Eqn. (36) is

given by

9, = QoM™ (38)

Equation (36) is a reasonable picture of q(x) in the limit of infinitely large
activation energy Eﬁ’ as can be seen graphically in the laminar flame theory
paper of Spalding.lU The difficulty of using Eqn. (36) is not in its functional
form but in evaluating a proper value for x*. Inserting Eqn. (36) into Eqn.

(6) we obtain

_ -0 A
¢G = QGMmB e » (39)

Thus the value of x* is critical to this approximation.

As representative of the "flame-sheet' models we shall discuss only the
model devised by Hermancell and later incorporated into the BDP composite
propellant model.12513 A1l of these models share the characteristic that the
reaction rate is evaluated only at the flame temperature; however, they di{fer
in deta%l sufficiently that our results will pertain only to the Hermancel /
BDP1251 formulation.” The other flame-sheet models, of which this writer is

10p. . Spalding, "II. One-Dimensional Laminar Flame Theory for Temperature-

Explicit Reaction Rates," Combustion & Flame, Vol. 1, p. 296 (1957).

He, g, Hermance, "A Model of Composite Propellant Combustion Including

Surface Heterogeneity and Heat Generation," ATAA Journal, Vol. 4, p. 1629
(1966).

12M.W. Beckstead, R.L. Derr and C.E. Price, "A Model of Composite Solid-

Propellant Combustion Based on Multiple Flames," AIAA Journal, Vol. 8,
p. 220 (1970).

ZSM.W. Beckstead, R.L. Derr and C.E. Price, "The Combustion of Solid Mono-

propellants and Composite Propellants," Thirteenth Symposium (Intermational)
on Combustion, The Combustion Institute (1971), p. 1047.
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aware, are due to Culick!4 and Williams.15 In Culick's model,14 q_ 1s not
determined by Eqn. (37) but specified a prioni as QgR, (defined in®Eqn. 29 with
Ty = Tg). The argument of the delta function is then expressed in a trans-
formed coordinate. With this specification of q,, however, one can show that
the derived burning rate formula depends on the coordinate transformation

used, thereby invalidating the method. The Williams modell® avoids the

delta function formalism by applying asymptotic analysis to the flame sheet
idealization. The resulting solution is functionally similar (though not
identical) to the Hermance formulation.

Hermancell argues for the value of x* as follows.

x* = Ut (40)

where U is the average velocity of gases flowing away from the solid interface
and t is the average reaction delay time. These quantities are in turn esti-
mated as

u=" (41)
Pg

where Pg is the gas density at the flame temperature, and

@ = . (42)

Combining (40), (41) and (42) we obtain

M
xX* = . (43)
v -E_/RT
g AG e G f

Hermance considered only v=2; therefore we have generalized his result to
arbitrary reaction order. Use of Eqn. (42) would seem to be inconsistent
with the sense in which the delta function might be considered a valid
idealization, i.e., in the limit of high Eg. In this limit the reaction is
essentially confined to a thin spatial zone whose thickness is small compared
with its distance from the surface. The T required by Eqn. (40) is the mean

14F.E.C. Culick, "An Elementary Calculation of the Combustion of Solid
Propellants," Astronautica Acta, Vol. 14, p. 171 (1969).

ZSF.A. Williams, "Quasi-Steady Gas-Phase Flame Theory in Unsteady Burning

of a Homogeneous Solid Propellant," AIAA Journal, Vol. 11, p. 1328 (1973).

22



time it takes for the gaseous reactants to travel from the surface to the
thin reaction zone. The t represented by Eqn. (42), on the other hand, is
related to the time it takes to complete the reaction within the reaction
zone. This same expression is used by Rice and Ginell® to describe the zero
activation energy limit. It would seem, therefore, that the true value of
x* is underestimated by Eqn. (43), leading to an overestimate of ¢g. 1In the
more rigorous treatment of the high Eg limit by Williamsls, however, an
expression for x* can be obtained which is the same as Eqn. (43) except for
a multiplicative constant (more precisely, a quantity which is nearly constant).
Such a circumstance seems to justify use of Eqn. (43); however, in an actual
numerical calculation the multiplicative constant may have a significant
effect since x* appears in an exponent. As we are primarily interested in
functional relationships in this paper we may ignore such fine points and
treat the Hermance flame standoff as adequately representative of the delta
function approach. Substituting Eqn. (43) into Egqn. (39), one obtains

_ -0 ) £
e T E (44)

C. Quasi-Constant Heat Release (QCHR)

We have developed an approximation to ¢; which is complementary to the
CTRR and DFHR limiting cases. The spatial variation of the heat release
function is essentially determined by a competition between the decreasing
reactant mass fraction mg and the increasing reaction rate kg(cf. Eqn. (7)).
In the CTRR case the mpg variation dominates so the q(x) is monotonic decreasing.
In the DFHR model kg initially increases faster than m, decreases so that
q(x) increases over most of the distance in the interval (0,x*). Ultimately,
however, T¢ is approached and mg drives q(x) to zero. Our approximation
assumes that the rate of increase of kg is matched by the rate of decrease
of m, at least out to some distance xj >> X/MCP, i.e., q(x) is assumed constant
from the surface to xj. Equation (6) can then be written

MC
Xl -——EX © -——-E-X
¢Géq(o)f e A dx+f e 3 q(x) dx
O X
1
. 2q(0) TR TIE) | F TN oy ay ] s

where y = x - x;. Since we have assumed that x;>> X\/MCp, the second term in
Eqn. (45) will be small due to the exponential and can ge neglected (assuming
also that q(x) does not increase too rapidly for x > xl). Eqn., (45) then
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becomes

% * O (46)

This formalism is the same as that used in the steady-state component of
the KTSS non-steady combustion theory.16 However, in that theory the equiva-
lent of Eqn. (46) was not used to calculate a padloii the steady-state burning
behavior. Instead, the pressure dependence of the term Aq(o)/Cy was deduced
semi-empirically by imposition of an assumed burning rate law og the form M=ap™.

Equation (46) also bears a formal resemblence to a simple burning rate
theory developed by Kubota, et al.l7 as a baseline in their study of double
base catalysis. In that work, however, q(x) was assumed constant throughout
the flame zone. The constant value was then evaluated, not at the interface,
but at the flame temperature and density. In order to avoid the result that
q(Tf) = 0, because the reactant mass fraction is zero at the flame temperature,
the mass fraction appears to have been arbitrarily reset to its initial value,.
The net result is a model which is identical to the low heat-feedback limit
of the (zero diffusion) CTRR formulation (see Section IVAl).

Evaluating Eqn. (11) at x = +o0 and substituting the result into Eqn. (46)
gives ¢ as an explicit function of Tg, M, and mpg*®. This enables a Level I
solution to be found by simultaneously solving Eqns. (21), (23) and either
Eqn. (19) or (24), depending on the desired surface decomposition mechanism,
for the three unknowns Tg, M, and mg*®. Thus, the net effect of the QCHR
approximation is to replace a difficult non-linear differential equation problem
with a relatively simple algebraic one.

A Level II formulation (see Section IIF) of the QCHR approximation can
be shown to give

-E_/RT
_— -0V
AN (WPm S &8

¢G"'

B g

MC R'T’
P s

(Level II) (47)

Unlike the CTRR and DFHR models the criterion for validity of the QCHR
assumption is not clearly expressible in terms of limiting values of the
input parameters. Rather, the specification is placed on the behavior of
an integrated quantity, q(x), which to some degree involves all of the input
parameters. Since the kinetics parameters pertinent to burning propellants

16

H. Krier, J.S. Tien, W.A. Sirignano and M. Summerfield, "Nonsteady Burning
Phenomena of Solid Propellants: Theory and Experiments,' AIAA Journal,
Vol. 6, p. 278 (1968).

17N. Kubota, T.J. Ohlemiller, L.H. Caveny and M. Summerfield, "The Mechanism
of Super-Rate Burming of Catalyzed Double Base Propellants," AMS Report
No. 1087, Princeton University, March 1973.
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are not reliably known, this method of specification may not represent a
disadvantage. In fact, observations of the burning process inevitably sense
integrated quantities, so that it may be easier to judge the appropriateness
of the QCHR approximation than those which specify a limiting value of EG.

This approach is illustrated in the next section.

D. Review of Experimental Evidence for Gas Phase

The most detailed experimental investigations of the thermal wave struc-
ture in solid propellant combustion have been measurements of temperature
profiles obtained by imbedding small thermocouples in propellant samples.
Interpretration of these measurements is beset by problems such as thermal
inertia, thermal conduction through the junction leads, and determining when
the thermocouple emerges from the solid. Because of the steep temperature
gradients actually measured, these problems, which are still not fully
resolved, can present serious obstacles to extracting accurate temperature
profiles from the raw data. Nonetheless, these measurements can provide
valuable qualitative and some quantitative insight as to the nature of the
solid propellant burning process. They have, for example, revealed the
existence of distinct plateaus in the spatial temgerature rofile in the
gas phase for single and double base propellants.17,18,19,20 The generally
accepted picture (for these propellants) has emerged of two exothermic kinetic
stages — one immediately adjacent to the surface (fizz zone) and one
associated with the visible flame. These two zones are separated by a '"dark"
zone characterized by temperature plateau where presumably the flame zone
reactants are created in thermoneutral reactions.

Evidence as to whether or not the visible flame reactions affect the
burning rate is mixed. One test is to look for a kink in the log r vs. log P
curves through the pressure range where_the visible flame first appears.
Crawford, et al.?l and Heath and Hirst““ both made particular note of the

18R. Klein, M. Mentster, G. Von Elbe and B. Lewis, "Determination of the

Thermal Structure of a Combustion Wave by Fine Thermocouples,' J. Phys.

& Colloid Chem., Vol. 54, p. 877 (1950).
190.4. Heller and A.5. Gordon, "Structure of the Gas Phase Combustion Region
of a Solid Double Base Propellant," J. Phys. Chem., Vol. 2, p. 773 (1955).
204, 4. Zenin, "Structure of Temperature Distribution in Steady-State Burning
of a Ballistite Powder," Fizika Goreniya i Varyva, Vol. 2, p. 67 (1966).
2JB.L. Crawford, Jr., C. Huggett and J.J. McBrady, '"The Mechanism of the
Burning of Double-Base Propellants,” J. Phys. Colloid Chem., Vol.64,
p. 854 (1950).

224.4. Heath and R. Hirst, " Some Characteristics of the High Pressure

Combustion of Double-Base Propellant,'" Eighth International Symposium on
Combustion, The Combustion Institute, p. 711 (1962).
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absence of such a kink. Suh and Claryzs, on the other hand, found a
prominent slope change at the onset of the visible flame. All of the
measurements were made with double-base propellants but compositions varied.

While the energy release in the flame zone is substantia121, we shall
assume that it contributes negligibly to ¢g. Further we assume that the fizz
zone reaction or reactions can be adequately represented by our single gas
phase reaction B+C. Thus T, is to be taken as the dark zone temperature and
not the final propellant flame temperature.

Klein, et al.,l8 first used the temperature profiles generated by imbed-
ded thermocouples to estimate the heat release function q(x) from the energy
conservation equation (Eqn.(4)). His results for nitrocellulose strands at
28 atm pressure are given in Fig. 2 which shows the inferred fiz7_zone energy
release. We have taken the thermocouple data of Kubota, et al.,17 for a
laboratory double-base propellant PNC/TMETN (particulate nitrocellulose and
trimethylolethane trinitrate) which has similar burn rate characteristics as
NC/NG (nitrocellulose and nitroglycerin) and constructed the function q(x)
in the manner of Klein, et al.l® This function is computed at 1.2 atm and
21 atm and shown in Figs. 3 and 4, respectively.

Since the QCHR approximation is couched in terms of q(x), the "empirical"
q(x) functions can be used to test the model directly. The CTRR and DFHR
Models have also been described in terms of q(x) for this same purpose.

Using Eqns. (5), (28), and (32) or (34) one can see that q(x) in the
CTRR Model is a monatonic decreasing function of x. This behavior is not
well approximated in Figures 2-4. The rising nature of q(x) results from
a reaction rate which is increasing (due to temperature rise) at a faster
rate than the reactant is being consumed.

The self-consistency of the DFHR Model can be partially tested by
integrating the q(x) functions over x to obtain an estimate of QMmg°
(Eqn. (37)), then using the position of the q(x) peak as x*. A "model' value
for ¢ can then be computed from Eqn. (39). This can be compared with the
"empirical" value of ¢g obtained by performing the integration in Eqn. (6).
The results of such a calculation are shown in Table 1. (The error associated
with these integrations is on the order of 10% as judged by the self-consistency
between the measured temperature gradient at the surface times X and the
integration over q(x)). Although the q(x) curves in Figures 2-4 are not
characterized by a small peak-width-to-standoff-distance ratio, the ''model"
and "empirical" values agree quite well. Not probed by this test, however,
is the accuracy with which the actual flame standoff distance would be
predicted by the idealized value as given by the Williams modelld, for instance.

The constant q assumption of the QCHR model also appears to be at odds
with the figures; however, the value of the model as an approximation depends
on the extent to which q(x) changes over the distance scale A/MC,. The QCHR
model value of ¢g is obtained from Figures 2-4 using Eqn. (46). " As shown in

28y.p. Suh and D.L. Clary, '"Steady-State Burning of Double-Base Propellants

at Low Pressures," AIAA Journal, Vol. 8, p. 825 (1970).
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Kubota, et.al.,17 for PNC/TMETN at 21 atm.
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Table 1, the QCHR values of ¢ seriously underestimate the empirical value

in the low pressure case (Figure 3) but are quite credible at the higher
pressures. The Kubota, et al.l7 data did not extend to higher pressures but,
taken together, Figures 3 and 4 might well represent a trend that the QCHR
approximation improves with pressure. Since the basis of the approximation

is that q(x) remains relatively constant for a distance away from the surface
on the order of A/MC,, it is equivalent to there being little curvature in the
temperature profile out to this distance. Thus, if the temperature rises
linearly away from the surface for a distance on the order of A/MCp, the QCHR
model should give a reasonable approximation to ¢.. The thermocouple data of
Zenin2V for a NC/NG propellant (ballistite) give similar results as that of
Kubota, et al.,l7 at 20 atm pressure. Zenin<0 also obtained data at pressures
up to 150 atm. At 50 atm the temperature rise appears to be quite linear to

a distance well beyond A/MCp, tending to support the prospect of QCHR improving
with pressure. At higher pressures the resolution is too coarse to judge the
linearity of T.

In summary, the available thermocouple data gives little encouragement to
the CTRR approximation since the shape of q(x) over the region of influence is
incorrectly predicted. The delta function formulation appears to be a reason-
able idealization of g(x), but we were unable to test the adequacy of the
idealized flame standoff distance.The QCHR approximation appears to be
reasonably consistent with the thermocouple data above ~ 20 atm for nitrate
ester propellants. We caution, however, that comparisons with this data are
made in part to demonstrate what we feel to be a promising analysis procedure.
We have made no attempt to assess the reliability of the embedded thermocouple
method for this purpose.

IV. ANALYTIC BURNING RATE EXPRESSIONS

In this section we shall mate the various approximations for ¢g with ¢g
for different surface decomposition models in order to derive expressions for
the burning rate. We are interested foremost in trying to determine the theo-
retical basis of the ubiquitous empirical burning rate laws which have been
variously determinedl,?2l as

r = a + bP (48)
r = bp" (49)
r=a+ bp" (50)

where a, b, and n are constants determined from fits of these functional forms
to the burning rate. In addition we shall be interested in the temperature
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sensitivity of the burning rate at constant pressure which is defined by

_ 1fdr
°p T T\dT (51)
o/ P

where the subscript p denotes that the derivative is taken while holdln% the
pressure constant. The most common empirical representation of cp isl,z24

o, =TT (52)

where the constants ¢ and d are fitting parameters. In order to maintain a
maximum of analytic flexibility, we shall confine ourselves to estimates based
on Level II approximations in every case.

A. Pyrolysis Decomposition Mechanism

As discussed in Section IIE one may obtain a value for the burning rate
at some (T,, P) by equating ¢g (Eqn. 18) to the model of ¢g of interest (Egns. 33,
35, 44, or 47). Using the pyrolysis law (Eqn. 19) to eliminate M as an independ-
ent variable, ¢g can be expressed as a function of Tg and Ty only. Any of the
models for ¢G can be expressed as a function of Tg and P only. For the CTRR and
DFHR models in which ¢; depends explicitly on Tg, Tf may be found as a function
of T4 by solving the equation

T =T, # (QGmB—O - ¢G(Ts’Tf)/M)/Ef

which equates the heat retained in the gas to the difference between the total
gas-phase heat release and the heat lost from the gas to the surface by
conduction. One then must find that value of Ty for which ¢g(Tg,To) = q)G(TS P)
and use the pyrolysis law to obtain the burning rate. ’

It is informative to illustrate this matching process graphically by
plotting both ¢g and ¢G as a function of Tg. This is done in a schematic
fashion in Figure 5, where the intersection of the ¢, and ¢g curves occurs at
the surface temperature pertinent to either (T,, Pj) or (T,, P2). Note that
this construct effects a separation of the influences of pressure and initial
temperature on the problem since ¢ . does not depend on To and ¢g does not
depend on P. For values of Tg not close to T' (where Tg + QS/C is the
surface temperature for Wthh no gas-phase hedt feedback is requlredg ¢g is
dominated by the exponential character of M (by Eqn. (19)); but for Tg ™~ T§

24K.K. Andreyev and A.F. Belyayev, Theory of Explosive Substances, Moscow

(1960), DDC #AD 6435971.
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the (Tg - T{) term dominates, driving ¢g to zero as Tg + T{. The dependence

of ¢g on P is less complicated in that varying P serves only to translate

the ¢5(Tg) curve vertically with respect to $5(Tg). To illustrate this, two

¢G curves are drawn in Figure 5 for the different pressures Pj and Ps

(where P; > P5). In the limit of sufficiently low pressures, the intersection
of ¢g and ¢g occurs at an essentially constant value of Tg = Ti. Thus in the
low pressure limit M - constant, that constant depending only upon Mo and T¢
and not on the gas-phase parameters. In this limit, it is fair to say that the
solid reaction is rate limiting. However, at high pressures (where M dominates
$¢g) neither the gas nor the solid phase reaction alone can be said to be rate
limiting, i.e., M will depend on changes in either the solid or gas-phase
reaction rates (or heats).

1. CTRR Approximation to ¢G

In order to discuss the burning rate derived from the CTRR approximation
to ¢., we first show that Eqns. (33) and (35) can be placed in a similar
form. We introduce the following analytic approximation for the exponential
integral

E (z) =

This approximation gives the correct limiting values for E; at z=0 and z-w
and overestimates E2 by a maximum of 25% at x=0.5. Using this expression to
reduce Eqn. (35), one can show that for v=1 or 2,

(53)

where Ry is defined in Eqn. (29). Equating this ¢G to ¢S from Eqn. (18),
solving for M produces the expression

-E./RT L

vaAG (mB—o)v—l G f QGmB o} !

M = T — — - 1] P (54)
CpR Tf Cp(Ts-To-Qs/Cp)

For most propellants it can be argued that Eg/RTg >>1, in which case the
variation of exp (-Eg/RTg) with Tg is enormous compared with that of (Ts-Ts )
in the high pressure limit where Tg#Tg'. The pressure dependence of the burn
rate M is therefore seen to be approximately M « pV 2, a dependence often
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associated with simple propellant combustion models.8’13’17’25’26 This p\)/2
dependence is a fairly rigorous result27 for a premixed laminar flame with a
reaction of order v, though the boundary conditions in that case are
different than for a solid propellant. Combining the low and high pressure
limiting behaviors, M as calculated in the CTRR approximation for a pyrolytic
mechanism has approximately the same overall pressure dependence as the form

M=a

v/2
1 + b1P

E
s

R(T, + QS/Ep)

a, = MO exp -

and b1 decreases slowly with increasing pressure.

The temperature sensitivity in the high pressure 1limit can be obtained as
follows.

Eqn. (19) may be used to obtain the derivative of M with respect to Te.
Eliminating M between Eqns. (19) and (54) gives an expression containing the
variables Tg, Ty, and T¢. Tg can be written as a function of Tp in Level I
generality by solving the equation hp(Ty) = hg(Tg). For the case of constant
and equal specific heats, the result is

(55)

where Qp = (Qg + méo Qg) is the total heat released in both the solid and gas
phases (through the fizz zone, for example) per unit mass of propellant.

Using this relation to eliminate Tf as well, one obtains an equation involving
only Tg and T,. Taking the natural logarithm of both sides of this equation

25ya. B. Zeldovich, "On the Combustion Theory of Powder and of Explosives,'

Zhurnal Exsperimental' noi i Teoreticheskoi Fiziki, Vol. 12, p. 498 (1942).
26S.F. Boys and J. Corner, "The Structure of the Reaction Zone in a Flame,"
Proc. Roy. Soc. (London), Vol. A197, p. 90 (1949).

27J.0. Hirshelder, C.F. Curtiss and R.B. Bird, Molecular Theory of Gases

and_Liquids, John Wiley & Sons, Inc., New York, p. 765 (1964).
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then performing an implicit differentiation with respect to To yields

B/2 o G _ v
4 2 . 7
dTg ) RTS (TS-TS) 2RTf 2Tf
dTo Es RTS2
1+ st
ZES(TS-TS)
where
B = - 1 = 1 .
C (T_-T!) ¢
1 - L2222 1 - =
Qg QMg

The parameter B8 is related to the fractional heat feedback from the gas phase,
being large when this fraction is large and close to unity in the limit of low
fractional heat feedback. Two limits can be identified. For high fractional

heat feedback, i.e.,

oT
=]
T
o}

and ¢ in this limit can be shown to be



S 7 - (56)

We do not expect this limit to be significant in a practical sense, however,
since if ¢g = QGMmB_O, Tg would approach a constant (as can be seen by using
Eqn. (18)) and M would therefore lose its pressure dependence. Experimentally,
most homogeneous propellants show no sign of departing from M « pl' at high
pressure. For low to moderate fractional heat feedback, and Eg/RTg >>1,

the leading terms in Sp become

E
B/2 + S : Y ' (57)

c =
PTqy/T) - Tl 2R(TeQE)° 2(Tyrqp/C)

The first term on the right hand side of Eqn. (57) is similar to the empirical
form of Eqn. (52). However, while the third term on the RHS of Eqn. (57) can
likely be neglected compared with the second term, the second term cannot be
expected to be negligible. For example, for a NC-based propellant, taking T

to be ~ 1500°k17,185,20 4pnq Eg as ~ 15 kcal/mole (representative of N02-aldeﬁyde
reaction528:33), EG/ZRTf2 = .0017, which is of the same magnitude as ¢ .29 Note
also that the second term decreases with increasing T, contrary to the empirical
behavior in Eqn. (52).

2. DFHR Approximation to ¢g

Equating Eqns. (18) and (44) and solving for M produces the following
result applicable to the high pressure limit (i.e., where Tg#T¢'). The term
in brackets can be expected to decrease slowly with pressure.

1
—EG/RTf o ] \)/2

M e Q.m, o
i gn | 2B = - (58)
C T (T_-T_") £

p s s

Again at low pressures M approaches the same constant (al) as was found in
Section IVAl.

For the 6-function case one finds that

28p. 1. Pollard and R.M.H. Wyatt, "Reactions between Formaldehyde and Nitrogen

Dioxide," Trans. Faraday Soc., Vol. 45, p. 760 (1949).

29L. Shulman, J. Harris, C. Lenchitz, "Burning Characteristics of Standard

Gun Propellants at Low Temperature (21°C to -52°C)," Tech. Report FRL-TR-41,
Picatinny Arsenal, Dover, NJ (1961).
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where
QGmB-o -1
gE n o — .
T !
Cp(TS TS )

Like B of the preceding section, £ is related to the fractional heat feedback
from the gas phase and is of order unity as long as ¢g is not very near QgMmy~°.
We previously argued that this circumstance is unlikely to be encountered over
the conditions of practical interest. Therefore in the high pressure limit

and for Eg/RTg >>1, the leading terms in the tempera<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>